Canadian Advances in Thermochemical H₂ Production in the Context of Conventional Electrolysis

Alistair I. Miller Romney B. Duffey Sam Suppiah

IAEA Meeting, Oarai, Japan

2007 April

Outline

The market for hydrogen

SMR vs LTE

The GIF context

AECL work on sulphur thermochemical cycles

Collaboration with USDOE on copper chloride cycles

A

Where will the demand be?

- Fuel for road vehicles?
 - Later perhaps but uncertain
 - Depends on battery vs fuel cell development
- More likely for larger vehicles (trains, ships)
- Big market is for upgrading petroleum
 - Exists and is growing rapidly
 - Especially in the oil sands developments in northern Alberta
 - Needs 3 to 5 kg H_2 /bbl
 - Expect over
 2 million bbl/d by 2015
 - 1 GWe = 160 000 bbl/d

How will H₂ be made?

- Conventionally come from natural gas by SMR
 - Cost has risen fast
 - Realistic to base on oil:gas at 6:1
 - Add 70 \$/t CO₂
 - Add 3% leakage of CH₄ from well to end use
 - Supply of natural gas is uncertain
 - All Mackenzie pipeline output could go to oil sands upgrading
- Need a new way
 - High-temperature thermochemical?
 - High-temperature electrolysis?
 - Conventional low-temperature electrolysis?

LTE will be available much sooner

- Make it using Generation III+ reactors
 - Could be deployed by 2015
- Key is to produce H₂ with off-peak electricity
 - Preferably with variablecurrent cells
 - Needs large-scale storage
 - In salt caverns
 - \Rightarrow Alberta case
 - 550 \$/kW cells
 - 5000 \$/t storage
 - Applying real-time Alberta power prices

Intermittent H₂ Production

And later? Within the GenIV, Canada focuses on SCWR with crosslink to VHTR

- Acronym
- SFR Sodium Cooled Fast Reactor
- LFR Lead Alloy Cooled Reactor
- GFR Gas Cooled Fast Reactor
- VHTR Very High Temperature Reactor
- SCWR Supercritical Water Cooled Reactor
- MSR Molten Salt Reactor

Spectrum Fuel cycle

Fast	Closed
Fast	Closed
Fast	Closed
Thermal	Once-through
Th. & F.	Once-t. & Closed
Thermal	Closed

CANDU SCWR Concept

- Started in 1994 as Candu X Program
- Establish the design limits and ultimate potential
- Main CANDU features are retained.
 - Horizontal modular channels.
 - Heavy water moderator.
- Supercritical light water coolant (higher efficiency).
- Advanced fuel channel design (internal insulation without calandria tube).
- Options systematically studied
 - Mark 1: indirect cycle $T_{out} \sim 400^+ \circ C$ set by existing Zr
 - Mark 2: direct cycle T_{out} ~ 600⁺ °C set by existing turbine
 - Mark3: multiple cycle T_{out} >850 + °C set by known materials

The H₂SO₄ Side of I/S and other S Cycles

- $H_2SO_4 \rightarrow SO_3 + H_2O$
 - Majority of energy; lower temperature (< 500°C)
- $SO_3 \rightarrow SO_2 + \frac{1}{2}O_2$
 - Minority of energy; higher temperature (> 700°C)
 - Could avoid a high temperature reactor by providing direct electric heating of a substrate on which catalyst deposited
 - Work so far on selecting catalysts

Assessing catalysts for SO₂ decomp.

A metal (textured Inconel 800) sheet coated with catalyst for SO₃ decomposition

Copper chloride cycles

- Work led by USDOE at Argonne (Michelle Lewis)
- AECL is currently focused on the electrochemical step

#	Reaction Stoichiometry	Temperature (°C)	
1	$2Cu + 2HCl(g) \rightarrow 2CuCl(l) + H_2(g)$	425-450	
2	$4CuCl(s) \rightarrow 2CuCl_2(a) + 2Cu$	<100	
3	$\begin{array}{r} 2\mathrm{CuCl}_2(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_2\mathrm{OCl}_2 \ (\mathrm{s}) + \\ 2\mathrm{HCl}(\mathrm{g}) \end{array}$	300-375	
4	$\operatorname{Cu}_2\operatorname{OCl}_2(s) \to 2\operatorname{CuCl}(1) + \frac{1}{2}\operatorname{O}_2(g)$	450-530	

- Or a variant on reaction #2: $2 \text{ CuCl} + 2 \text{ HCl} \rightarrow 2 \text{ CuCl}_2 + \text{H}_2$
 - Avoids solid phase
 - Preliminary testing yields H_2 from both reactions at ~ 0.65 V

Placing Canada in Global Context

